文章中在skip pathway处使用了CCBAM,但是CCBAM在时间维度作了池化,那么在推理过程中是如何保证因果呢?
2000元阿里云代金券免费领取,2核4G云服务器仅698元/3年,新老用户都有优惠,立即抢购>>>
为了保证推理时的因果,可以在时间维度上使用累加池化,也就是沿时间帧逐步进行池化操作,这和在Conv-TasNet论文里提出的 cumulative layer normalization (cLN)类似;或者像实现Transformer的注意力阵列一样加入时间掩蔽。
2000元阿里云代金券免费领取,2核4G云服务器仅698元/3年,新老用户都有优惠,立即抢购>>>
提出了一种卷积递归编码器-解码器结构(CRED),以增强基于频率递归的特征表示。将频率递归应用于沿频率轴的三维卷积特征映射,并通过前馈顺序记忆网络有效地实现。FRCRN模型利用CRED捕捉长程频率相关性,利用时间循环模块捕捉时间动态。在复数域实现了FRCRN,并使用联合损失函数进行优化。FRCRN模型在宽带基准上实现了SOTA性能,并在ICASSP
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。